ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Xinwu Su, Yongli Xu, Yinlu Han
Nuclear Science and Engineering | Volume 195 | Number 3 | March 2021 | Pages 239-255
Technical Paper | doi.org/10.1080/00295639.2020.1808388
Articles are hosted by Taylor and Francis Online.
The medium-mass structural material titanium has been extensively applied in the nuclear reactor systems of fission or fusion, and related data are also urgently needed. In the present work, all reaction cross sections, angular distributions, energy spectra, and double-differential cross sections are consistently calculated and analyzed for the n+48Ti reaction below 200 MeV. The theoretical calculations are compared with the experimental data, together with the evaluated results in the ENDF/B-VIII.0, JENDL-4.0, and JEFF-3.3 libraries. In general, these results provide a satisfactory description of the corresponding experimental data.