ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Praneel P. Gulabrao, Kevin T. Clarno
Nuclear Science and Engineering | Volume 195 | Number 2 | February 2021 | Pages 161-172
Technical Paper | doi.org/10.1080/00295639.2020.1794455
Articles are hosted by Taylor and Francis Online.
Photon buildup is a function of energy, medium, and geometry and therefore must be specifically calculated for the case of interest. The Martian atmosphere, mostly comprising carbon dioxide, is becoming more relevant to radiation researchers and therefore warrants the study of this gas mixture’s buildup properties for ionizing photon flux resulting from the secondary effects of galactic cosmic rays and solar flares. Specifically, this work uses the MCNP6 code to develop energy absorption buildup factors in finite slab models for energies ranging from 40 keV to 15 MeV with Martian regolith as the backscattering medium. The Martian carbon dioxide cycle is accounted for by determining maximum and minimum mean densities as a function of orbital position. An isotropic point source model for the atmosphere is also developed using the geometric progression fitting function. Buildup is bounded to a factor of approximately 23 at 100 keV for normally incident photons at the top of the atmosphere. For conservatism, the design problem neglects coherent scattering but assumes bremsstrahlung effects and uses Klein-Nishina free-electron cross sections for Compton scattering.