ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Praneel P. Gulabrao, Kevin T. Clarno
Nuclear Science and Engineering | Volume 195 | Number 2 | February 2021 | Pages 161-172
Technical Paper | doi.org/10.1080/00295639.2020.1794455
Articles are hosted by Taylor and Francis Online.
Photon buildup is a function of energy, medium, and geometry and therefore must be specifically calculated for the case of interest. The Martian atmosphere, mostly comprising carbon dioxide, is becoming more relevant to radiation researchers and therefore warrants the study of this gas mixture’s buildup properties for ionizing photon flux resulting from the secondary effects of galactic cosmic rays and solar flares. Specifically, this work uses the MCNP6 code to develop energy absorption buildup factors in finite slab models for energies ranging from 40 keV to 15 MeV with Martian regolith as the backscattering medium. The Martian carbon dioxide cycle is accounted for by determining maximum and minimum mean densities as a function of orbital position. An isotropic point source model for the atmosphere is also developed using the geometric progression fitting function. Buildup is bounded to a factor of approximately 23 at 100 keV for normally incident photons at the top of the atmosphere. For conservatism, the design problem neglects coherent scattering but assumes bremsstrahlung effects and uses Klein-Nishina free-electron cross sections for Compton scattering.