ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Shiyi He, Yan Xia, Fei Xu, Leidang Zhou, Xiaoping Ouyang
Nuclear Science and Engineering | Volume 195 | Number 2 | February 2021 | Pages 148-160
Technical Paper | doi.org/10.1080/00295639.2020.1794454
Articles are hosted by Taylor and Francis Online.
Alpha-decay propulsion technology, a microthrust technology based on thin spontaneous-alpha-decay films, is proposed in this paper. A large quantity of decayed alpha particles emitted from the upper surface of thin films would generate thrust statistically. Simulations were executed using the Monte Carlo N-Particle Transport Code (MCNP) to acquire the energy and angular distributions of escaping alpha particles, as well as the key parameters of alpha-decay films. A 22.40-μm 210Po film combined with a 20-μm aluminum film was able to generate an average thrust of 29.5 nN/cm2 in half-life time. The remaining charges and thermal energies of the decay films were considered. Directional-generated alpha particles were simulated to analyze the influence of angular scattering on escaped alpha-particle distributions. Alpha particles with low energy, with large scattering angles, or with large generated angles contributed less to thrust value. With the assumptions of no scattering, constant stopping power, and no range struggling, a set of analytic formulas were derived. Comparisons of the distributions and typical parameters between simulations and the analytic model were conducted. Discrepancies were mostly caused by the three assumptions and were less than 3.7% for thrust and less than 3.9% for the proportion of escaped alpha-particles.