ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Nathan E. White, Robert V. Tompson, Sudarshan K. Loyalka
Nuclear Science and Engineering | Volume 195 | Number 2 | February 2021 | Pages 137-147
Technical Paper | doi.org/10.1080/00295639.2020.1793559
Articles are hosted by Taylor and Francis Online.
Although aerosols in some postaccident nuclear environments can be nonspherical, chainlike, or agglomerates, there have been limited investigations of the rate processes (such as coagulation, evaporation, condensation, and deposition) involving such particles. In a previous investigation, the understandings of condensation and evaporation on such particles were expanded through use of a one-speed approximation for modeling vapor (or fission product) molecular transport, and the present paper extends that work to energy- and mass-dependent transport of vapor molecules within the context of the linear Boltzmann equation via the Monte Carlo particle transport method for rigid sphere molecules. The results are benchmarked against available numerical results and experimental data for a single sphere, and it is found again that the normalized condensation rate has only a weak dependence on the molecular mass ratio (vapor to background) and that the one-speed approximation is quite good. Results are reported for a range of chainlike and agglomerate aerosols.