ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Nathan E. White, Robert V. Tompson, Sudarshan K. Loyalka
Nuclear Science and Engineering | Volume 195 | Number 2 | February 2021 | Pages 137-147
Technical Paper | doi.org/10.1080/00295639.2020.1793559
Articles are hosted by Taylor and Francis Online.
Although aerosols in some postaccident nuclear environments can be nonspherical, chainlike, or agglomerates, there have been limited investigations of the rate processes (such as coagulation, evaporation, condensation, and deposition) involving such particles. In a previous investigation, the understandings of condensation and evaporation on such particles were expanded through use of a one-speed approximation for modeling vapor (or fission product) molecular transport, and the present paper extends that work to energy- and mass-dependent transport of vapor molecules within the context of the linear Boltzmann equation via the Monte Carlo particle transport method for rigid sphere molecules. The results are benchmarked against available numerical results and experimental data for a single sphere, and it is found again that the normalized condensation rate has only a weak dependence on the molecular mass ratio (vapor to background) and that the one-speed approximation is quite good. Results are reported for a range of chainlike and agglomerate aerosols.