ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
B. S. Southworth, Milan Holec, T. S. Haut
Nuclear Science and Engineering | Volume 195 | Number 2 | February 2021 | Pages 119-136
Technical Paper | doi.org/10.1080/00295639.2020.1799603
Articles are hosted by Taylor and Francis Online.
A standard approach to solving the S transport equations is to use source iteration with diffusion synthetic acceleration (DSA). Although this approach is widely used and effective on many problems, there remain some practical issues with DSA preconditioning, particularly on highly heterogeneous domains. For large-scale parallel simulation, it is critical that both (a) preconditioned source iteration converges rapidly and (b) the action of the DSA preconditioner can be applied using fast, scalable solvers, such as algebraic multigrid (AMG). For heterogeneous domains, these two interests can be at odds. In particular, there exist DSA diffusion discretizations that can be solved rapidly using AMG, but they do not always yield robust/fast convergence of the larger source iteration. Conversely, there exist robust DSA discretizations where source iteration converges rapidly on difficult heterogeneous problems, but fast parallel solvers like AMG tend to struggle applying the action of such operators. Moreover, very few current methods for the solution of deterministic transport are compatible with voids. This paper develops a new heterogeneous DSA preconditioner based on only preconditioning the optically thick subdomains. The resulting method proves robust on a variety of heterogeneous transport problems, including a linearized hohlraum mesh related to inertial confinement fusion. Moreover, the action of the preconditioner is easily computed using AMG iterations, convergence of the transport iteration typically requires 2 to 5× fewer iterations than current state-of-the-art “full” DSA, and the proposed method is trivially compatible with voids. On the hohlraum problem, rapid convergence is obtained by preconditioning less than 3% of the mesh elements with five to ten AMG iterations.