ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Mohamed S. El-Tokhy, Imbaby I. Mahmoud
Nuclear Science and Engineering | Volume 195 | Number 1 | January 2021 | Pages 69-100
Technical Paper | doi.org/10.1080/00295639.2020.1787013
Articles are hosted by Taylor and Francis Online.
This paper is focused on overcoming reactor shutdown malfunction and diagnostics due to poor cooling and water drop level within a pressurized water reactor. So the temperature coupling analysis between the heat exchanger (HEX) and the U-tube steam generator (UTSG) is inspected under changes of primary and secondary water temperature. This coupling allows the removal of heat from the UTSG via the HEX. For the UTSG, implicit and explicit solutions for analysis and evaluation of UTSG characteristics are conducted. Scarce explicit models describing the behaviors of the UTSG are available. This analytical framework is proposed to control the water/steam flow within the UTSG of a nuclear power reactor (NPR). Exact performances for temperatures of metal tube temperature and primary water entering and exiting from the tube are derived. There is no one implicit model that can describe the performance characteristics of heat transfer within the UTSG. So a novel simulator declaring the operational behavior of the UTSG in an NPR has been built. This simulator of the UTSG provides exact handling of the UTSG performance characteristics. For the HEX, the exact handling of the HEX including boundary temperature and the primary and secondary interface temperatures are proposed. Three different models are implemented (combinational, steady state, and integral). The possibility of realizing higher steam quality is established through block diagram programming models. Compared to literature results, the built models are validated with high agreement. As a final conclusion, the proposed analyses allow the control of steam generation and flow. The introduced results compensate for the necessity of expensive and complicated controllers within the HEX and UTSG through parameter variation. Accordingly, the performance of the NPR is enhanced.