ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Yuxuan Liu, Kyle Vaughn, Brendan Kochunas, Thomas Downar
Nuclear Science and Engineering | Volume 195 | Number 1 | January 2021 | Pages 50-68
Technical Paper | doi.org/10.1080/00295639.2020.1780853
Articles are hosted by Taylor and Francis Online.
Over the years, significant validation work for the neutronics code MPACT has been performed against zero-power critical benchmarks and measured data from operating nuclear power plants. Among all of these efforts, however, validation of the pin-resolved capability in MPACT has been limited by the public availability of experimental data and to a lesser degree availability of measurement techniques and facilities that provide such detailed data. Recently, new measurement results to experimentally determine the reaction rate along the pellet radius from the IPEN/MB-01 research reactor facility (IPEN) have been published as a benchmark in the International Reactor Physics Experiment Project handbook. In this paper, we examine MPACT simulation results for several IPEN benchmark experiments with emphasis on the intrapin reaction rate measurements. The IPEN critical experiments with variations in system temperature and gadolinium loadings are modeled first with the latest MPACT cross-section library and linear source (LS) method of characteristics (MOC) capability. The MPACT results of two-dimensional (2-D) models with axial buckling are within 160 pcm from the experimental eigenvalues using the flat source MOC. Using the LS MOC, the errors are no more than 70 pcm, and the temperature trend of various cases is smaller. The MPACT three-dimensional models with LS show slightly worse comparisons than the 2-D models, which may be due to the isotropic transverse leakage and homogenized cross-section approximations of the 2-D/one-dimensional solver. For the reaction rate validation, MPACT produces intrapin reaction rate results within 2σ of the experiment and shows excellent agreement with the Monte Carlo solution. The observed discrepancies between the simulated results and experiment for the fission rate measurements are discussed. The kinetics parameters measured in another IPEN experiment are also compared with MPACT simulations using different kinetics data sources. According to the validation results, JENDL-4.0 and Santamarina et al.’s data are recommended for MPACT transient calculations.