ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Dean Wang
Nuclear Science and Engineering | Volume 195 | Number 1 | January 2021 | Pages 1-12
Technical Paper | doi.org/10.1080/00295639.2020.1785190
Articles are hosted by Taylor and Francis Online.
We present the new iterative method lpCMFD-SOR, which combines the linear prolongation coarse-mesh finite difference (lpCMFD) scheme with the method of successive overrelaxation (SOR) for neutron transport source iteration (SI). The lpCMFD method is the latest coarse-mesh finite difference (CMFD)–type acceleration scheme and is unconditionally stable and more effective than the standard CMFD method. The SOR method is a variant of the Gauss-Seidel method for solving a linear system of equations, resulting in faster convergence. The idea is to update the scattering source with overrelaxation to speed up the coupled transport-diffusion SI. Fourier analysis shows that the lpCMFD-SOR method converges for a relaxation parameter in the range of . It becomes less effective when underrelaxed (i.e., ) and increasingly more effective as increases above 1 until reaching the optimal overrelaxation value, which is, however, problem dependent. The optimal overrelaxation parameter increases with both the scattering ratio and the optical thickness of the problem. Numerical experiments have confirmed the Fourier analysis results. In general, the SOR method can further enhance the convergence rate of the lpCMFD method by more than 40% for neutron transport problems.