ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Dean Wang
Nuclear Science and Engineering | Volume 195 | Number 1 | January 2021 | Pages 1-12
Technical Paper | doi.org/10.1080/00295639.2020.1785190
Articles are hosted by Taylor and Francis Online.
We present the new iterative method lpCMFD-SOR, which combines the linear prolongation coarse-mesh finite difference (lpCMFD) scheme with the method of successive overrelaxation (SOR) for neutron transport source iteration (SI). The lpCMFD method is the latest coarse-mesh finite difference (CMFD)–type acceleration scheme and is unconditionally stable and more effective than the standard CMFD method. The SOR method is a variant of the Gauss-Seidel method for solving a linear system of equations, resulting in faster convergence. The idea is to update the scattering source with overrelaxation to speed up the coupled transport-diffusion SI. Fourier analysis shows that the lpCMFD-SOR method converges for a relaxation parameter in the range of . It becomes less effective when underrelaxed (i.e., ) and increasingly more effective as increases above 1 until reaching the optimal overrelaxation value, which is, however, problem dependent. The optimal overrelaxation parameter increases with both the scattering ratio and the optical thickness of the problem. Numerical experiments have confirmed the Fourier analysis results. In general, the SOR method can further enhance the convergence rate of the lpCMFD method by more than 40% for neutron transport problems.