ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Cheol Ho Pyeon, Masao Yamanaka, Tomohiro Endo, Go Chiba, Willem F. G Van Rooijen, Kenichi Watanabe
Nuclear Science and Engineering | Volume 194 | Number 12 | December 2020 | Pages 1116-1127
Technical Paper | doi.org/10.1080/00295639.2020.1774230
Articles are hosted by Taylor and Francis Online.
At the Kyoto University Critical Assembly experiments on kinetics parameters are carried out at near-critical configurations, supercritical and subcritical states, in the thermal neutron spectrum made with a highly enriched uranium fuel. The main calculated kinetics parameters, the effective delayed neutron fraction (βeff) and the neutron generation time (Ʌ), are used effectively for the estimation of experimental parameters, and the accuracy of experiments on prompt neutron decay constant (α) and subcriticality (ρ$) in dollar units is attained by the numerical results of βeff and Ʌ. Furthermore, the value of βeff/Ʌ is experimentally deduced with the use of the experimental results of α and ρ$, ranging between 250 and −80 pcm. Thus, the experimentally deduced values of βeff/Ʌ that reveal good accuracy through a comparison with those by the MCNP6.1 calculations with JENDL-4.0 are then taken as an index of Ʌ by introducing an acceptable assumption of βeff at near-critical configurations. From the results of experimental and numerical analyses, the experimental value of βeff/Ʌ is important for the validation of Ʌ since kinetics parameters are successfully obtained from the clean cores of near-critical configurations in the thermal neutron spectrum.