ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Tomohiro Endo, Akio Yamamoto
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 1089-1104
Technical Paper | doi.org/10.1080/00295639.2020.1720499
Articles are hosted by Taylor and Francis Online.
The prompt neutron decay constant in a steady-state subcritical system can be directly measured using a reactor noise analysis method such as the Feynman- method. To reduce the nuclear data–induced uncertainty of for a target system, this study investigates the applicability of data assimilation techniques, i.e., the bias factor method and the cross-section adjustment method, based on a subcritical measurement of conducted at Kyoto University Critical Assembly (KUCA). The sensitivity coefficients of and with respect to the nuclear data were efficiently estimated using a deterministic SN transport code with first-order perturbation theory. As a result, the a priori relative uncertainty of due to the 56-group SCALE covariance data can be reduced if there is strong correlation between the measured and the target . The experimental value of contributes to improving the nuclear data of total fission spectrum and total fission neutron number via strong correlations between and prompt and between and prompt , by utilizing the sensitivity coefficients of with respect to prompt and .