ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Chris Keckler, Massimiliano Fratoni, Ehud Greenspan
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 1079-1088
Technical Paper | doi.org/10.1080/00295639.2020.1715688
Articles are hosted by Taylor and Francis Online.
This study quantifies the uncertainty in the calculated displacements per atom (DPA) value due to uncertainties in the neutron spectrum resulting from cross-section data uncertainty. Using generalized perturbation theory, covariance matrices, and fine-group DPA cross sections, a method for propagating nuclear data uncertainties through to the calculation of DPA is outlined. This method is then implemented for the case of a typical sodium-cooled breed-and-burn core. The majority of uncertainties in accumulated DPA were found to come from the inelastic scattering cross section for 238U. Overall the uncertainty in accumulated DPA is found to be roughly 2% of the total value.