ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Marianna Papadionysiou, Kim Seongchan, Mathieu Hursin, Alexander Vasiliev, Hakim Ferroukhi, Andreas Pautz, Han Gyu Joo
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 1056-1066
Technical Paper | doi.org/10.1080/00295639.2020.1753418
Articles are hosted by Taylor and Francis Online.
The current standard for computational neutronic analysis of nuclear power plants (NPPs) is the so-called conventional approach, which relies on few-group, coarse-mesh diffusion calculations. The recent evolution of computing clusters and computational techniques gives the opportunity to use codes that perform first principles–based multiphysics simulations, allowing high resolution of the calculated parameters. The goal of this work is to assess the performance of the deterministic high-resolution transport code nTRACER and the nodal code PARCS on the basis of VVER core configurations. The V1000-2D benchmarks of the NUclear REactor SIMulation (NURESIM) project framework are used to provide the neutronic and modeling data as well as reference solutions for both codes. A reference solution is also generated using Serpent2. The accuracy and limitations of the codes are illustrated together with their computational requirements. PARCS shows good agreement with the reference solutions although the results present some discrepancies due to the provided discontinuity factors. nTRACER is capable of producing high-accuracy and high-resolution solutions in a fraction of the time required by the Monte Carlo solver.