ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Marianna Papadionysiou, Kim Seongchan, Mathieu Hursin, Alexander Vasiliev, Hakim Ferroukhi, Andreas Pautz, Han Gyu Joo
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 1056-1066
Technical Paper | doi.org/10.1080/00295639.2020.1753418
Articles are hosted by Taylor and Francis Online.
The current standard for computational neutronic analysis of nuclear power plants (NPPs) is the so-called conventional approach, which relies on few-group, coarse-mesh diffusion calculations. The recent evolution of computing clusters and computational techniques gives the opportunity to use codes that perform first principles–based multiphysics simulations, allowing high resolution of the calculated parameters. The goal of this work is to assess the performance of the deterministic high-resolution transport code nTRACER and the nodal code PARCS on the basis of VVER core configurations. The V1000-2D benchmarks of the NUclear REactor SIMulation (NURESIM) project framework are used to provide the neutronic and modeling data as well as reference solutions for both codes. A reference solution is also generated using Serpent2. The accuracy and limitations of the codes are illustrated together with their computational requirements. PARCS shows good agreement with the reference solutions although the results present some discrepancies due to the provided discontinuity factors. nTRACER is capable of producing high-accuracy and high-resolution solutions in a fraction of the time required by the Monte Carlo solver.