ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Guillaume Giudicelli, Kord Smith, Benoit Forget
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 1044-1055
Technical Paper | doi.org/10.1080/00295639.2020.1765606
Articles are hosted by Taylor and Francis Online.
A recent hybrid stochastic-deterministic calculation scheme using Monte Carlo–tallied group cross sections in a deterministic solver uses the best of both worlds for accurate and fast reactor agnostic transport simulations. However, neglecting the angular dependence of group cross sections induces large self-shielding errors in resonance groups, causing a large reactivity bias up to 300 pcm in light water reactors. To recover this error, we introduce a two-scale assembly transport calculation scheme: cross sections are tallied at the assembly level, while equivalence parameters are computed in a two-dimensional (2-D) pin cell system. We validate a novel equivalence method based on jump conditions on angular fluxes by comparing to the well-established superhomogenization method for 2-D and three-dimensional (3-D) linear source method of characteristics calculations. Test cases include 2-D and 3-D assemblies of two different enrichments with homogeneous and discretized cross-section discretizations. The linear source approximation enables using coarse source-region discretization for these hot zero-power problems. Both equivalence techniques perform similarly, recover the reactivity bias, and achieve near preservation of reaction rates, supporting this multiscale approach to equivalence.