ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Ilham Variansyah, Benjamin R. Betzler, William R. Martin
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 1025-1043
Technical Paper | doi.org/10.1080/00295639.2020.1743578
Articles are hosted by Taylor and Francis Online.
Multigroup constants for deterministic methods that preserve the time-dependent physics of the neutron transport equations are derived. Alternative multigroup constant weighting spectra are discussed: (1) the fundamental k-eigenfunction, (2) the fundamental α-eigenfunction, and (3) a composite of several α-modes. To generate the fundamental α-eigenfunction for calculating the multigroup constants, a static fundamental α-eigenvalue method is implemented into the open source Monte Carlo code OpenMC. Several static and kinetic problems are devised to verify the implementations and to investigate the relative performance of the alternative multigroup constant weighting spectra. Results emphasize that as a multigroup constant weighting spectrum, the fundamental α-eigenfunction offers physical characteristics that make it advantageous (in producing accurate solutions) over the typically used fundamental k-eigenfunction.