ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Sterling M. Harper, Paul K. Romano, Benoit Forget, Kord S. Smith
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 1009-1015
Technical Paper | doi.org/10.1080/00295639.2020.1719765
Articles are hosted by Taylor and Francis Online.
Monte Carlo (MC) transport codes offer high-fidelity modeling of particle transport physics, but their high computational cost makes them impractical for many applications. For some applications such as multiphysics and depletion that use finely discretized geometries, a large portion of this computational cost is attributable to ray tracing. Neighbor lists are a well-known method for accelerating ray-tracing calculations in a MC code, but despite their prevalence, little work has been published on the details of their implementation. The fine details can have a significant impact on performance, particularly when using shared-memory parallelism. This paper addresses these details of implementation with a discussion of different neighbor list schemes and their impact on software runtime.
Performance tests were run by using OpenMC on a pin-cell problem discretized with up to 200 axial regions. The results demonstrate that switching from surface-based to cell-based neighbor lists leads to a 10 faster calculation rate for the most fine discretization. Furthermore, using a threadsafe shared-memory data structure results in a 20% faster calculation rate versus simple threadprivate neighbor lists. Results here show that a data structure that is contiguous in memory improves performance by only 1% to 2% over noncontiguous linked lists.