ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Joshua Hanophy, Ben S. Southworth, Ruipeng Li, Tom Manteuffel, Jim Morel
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 989-1008
Technical Paper | doi.org/10.1080/00295639.2020.1747263
Articles are hosted by Taylor and Francis Online.
The computational kernel in solving the SN transport equations is the parallel sweep, which corresponds to directly inverting a block lower triangular linear system that arises in discretizations of the linear transport equation. Existing parallel sweep algorithms are fairly efficient on structured grids, but still have polynomial scaling, P1/d + M, for d dimensions, P processors, and M angles. Moreover, an efficient scalable parallel sweep algorithm for use on general unstructured meshes remains elusive. Recently, an algebraic multigrid (AMG) method based on approximate ideal restriction (AIR) was developed for nonsymmetric matrices and shown to be an effective solver for linear transport. Motivated by the superior scalability of the AMG methods (logarithmic in P) as well as the simplicity with which the AMG methods can be used in most situations, including on arbitrary unstructured meshes, this paper investigates the use of parallel AIR (pAIR) for solving the SN transport equations with source iteration in place of parallel sweeps. The results presented in this paper show that pAIR is a robust and scalable solver. Although sweeps are still shown to be much faster than pAIR on a structured mesh of a unit cube, pAIR is shown to perform similarly on both a structured and unstructured mesh, and offers a new, simple, black-box alternative to parallel transport sweeps.