ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Joshua Hanophy, Ben S. Southworth, Ruipeng Li, Tom Manteuffel, Jim Morel
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 989-1008
Technical Paper | doi.org/10.1080/00295639.2020.1747263
Articles are hosted by Taylor and Francis Online.
The computational kernel in solving the SN transport equations is the parallel sweep, which corresponds to directly inverting a block lower triangular linear system that arises in discretizations of the linear transport equation. Existing parallel sweep algorithms are fairly efficient on structured grids, but still have polynomial scaling, P1/d + M, for d dimensions, P processors, and M angles. Moreover, an efficient scalable parallel sweep algorithm for use on general unstructured meshes remains elusive. Recently, an algebraic multigrid (AMG) method based on approximate ideal restriction (AIR) was developed for nonsymmetric matrices and shown to be an effective solver for linear transport. Motivated by the superior scalability of the AMG methods (logarithmic in P) as well as the simplicity with which the AMG methods can be used in most situations, including on arbitrary unstructured meshes, this paper investigates the use of parallel AIR (pAIR) for solving the SN transport equations with source iteration in place of parallel sweeps. The results presented in this paper show that pAIR is a robust and scalable solver. Although sweeps are still shown to be much faster than pAIR on a structured mesh of a unit cube, pAIR is shown to perform similarly on both a structured and unstructured mesh, and offers a new, simple, black-box alternative to parallel transport sweeps.