ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Milan Hanus, Jean C. Ragusa
Nuclear Science and Engineering | Volume 194 | Number 10 | October 2020 | Pages 873-893
Technical Paper | doi.org/10.1080/00295639.2020.1767436
Articles are hosted by Taylor and Francis Online.
This work is motivated by the need to solve realistic problems with complex energy, space, and angle dependence, which requires parallel multigroup transport sweeps combined with efficient acceleration of the thermal upscattering. We present various iterative schemes based on the two-grid (TG) diffusion synthetic acceleration (DSA) method. In its original form, the TG method is used with the Gauss-Seidel iterative scheme over energy groups, which makes it impractical for parallel computation. We therefore formulate a Jacobi-style version. Furthermore, we propose a new scheme that reduces the overall number of transport sweeps by removing the need to fully converge the within-group iterations before the TG step. This becomes possible by adding an additional within-group DSA solve after each transport sweep. Fourier analyses are carried out to ascertain the effectiveness of the proposed scheme, with further corroboration from massively parallel numerical results from practical problem calculations. We discuss several implementation strategies of the new scheme, paying particular attention to the consequences on the overall efficiency of adding additional diffusion solves with a relatively low number of degrees of freedom per process.