ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Milan Hanus, Jean C. Ragusa
Nuclear Science and Engineering | Volume 194 | Number 10 | October 2020 | Pages 873-893
Technical Paper | doi.org/10.1080/00295639.2020.1767436
Articles are hosted by Taylor and Francis Online.
This work is motivated by the need to solve realistic problems with complex energy, space, and angle dependence, which requires parallel multigroup transport sweeps combined with efficient acceleration of the thermal upscattering. We present various iterative schemes based on the two-grid (TG) diffusion synthetic acceleration (DSA) method. In its original form, the TG method is used with the Gauss-Seidel iterative scheme over energy groups, which makes it impractical for parallel computation. We therefore formulate a Jacobi-style version. Furthermore, we propose a new scheme that reduces the overall number of transport sweeps by removing the need to fully converge the within-group iterations before the TG step. This becomes possible by adding an additional within-group DSA solve after each transport sweep. Fourier analyses are carried out to ascertain the effectiveness of the proposed scheme, with further corroboration from massively parallel numerical results from practical problem calculations. We discuss several implementation strategies of the new scheme, paying particular attention to the consequences on the overall efficiency of adding additional diffusion solves with a relatively low number of degrees of freedom per process.