ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Nicolas Zweibaum, Edward Blandford, Craig Gerardi, Per Peterson
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 793-811
Technical Paper | doi.org/10.1080/00295639.2019.1710976
Articles are hosted by Taylor and Francis Online.
The capability to validate integral transient response models is of critical importance for licensing new reactor designs. The Kairos Power testing program has developed a methodology to design scaled experiments that predict the thermal fluid behavior of the Kairos Power Fluoride Salt–Cooled High-Temperature Reactor (KP-FHR). Such experiments will be used as part of the assessment base of evaluation models supporting KP-FHR safety analysis. The Hierarchical Two-Tiered Scaling (H2TS) methodology was selected for Kairos Power scaling efforts that will be applied to integral effects tests (IETs) for system-level testing. In this paper, the scaling methodology is presented for thermal fluid IETs that will model the KP-FHR primary heat transport system under normal operations and transient conditions involving transition to natural circulation. This paper provides a basis for using surrogate fluids for testing that requires the thermal fluid performance of the KP-FHR primary coolant lithium fluoride–beryllium fluoride [2LiF/BeF2 (Flibe)] to be replicated. Kairos Power intends to use heat transfer oil as a surrogate fluid for Flibe in thermal fluid IETs. This paper demonstrates that this class of surrogate fluids is an acceptable substitute for Flibe salt for some types of scaled IETs and that the principal thermal fluid properties can be properly scaled with minor distortions over the range of conditions expected for both normal and off-normal operating conditions of the KP-FHR.