ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Nicolas Zweibaum, Edward Blandford, Craig Gerardi, Per Peterson
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 793-811
Technical Paper | doi.org/10.1080/00295639.2019.1710976
Articles are hosted by Taylor and Francis Online.
The capability to validate integral transient response models is of critical importance for licensing new reactor designs. The Kairos Power testing program has developed a methodology to design scaled experiments that predict the thermal fluid behavior of the Kairos Power Fluoride Salt–Cooled High-Temperature Reactor (KP-FHR). Such experiments will be used as part of the assessment base of evaluation models supporting KP-FHR safety analysis. The Hierarchical Two-Tiered Scaling (H2TS) methodology was selected for Kairos Power scaling efforts that will be applied to integral effects tests (IETs) for system-level testing. In this paper, the scaling methodology is presented for thermal fluid IETs that will model the KP-FHR primary heat transport system under normal operations and transient conditions involving transition to natural circulation. This paper provides a basis for using surrogate fluids for testing that requires the thermal fluid performance of the KP-FHR primary coolant lithium fluoride–beryllium fluoride [2LiF/BeF2 (Flibe)] to be replicated. Kairos Power intends to use heat transfer oil as a surrogate fluid for Flibe in thermal fluid IETs. This paper demonstrates that this class of surrogate fluids is an acceptable substitute for Flibe salt for some types of scaled IETs and that the principal thermal fluid properties can be properly scaled with minor distortions over the range of conditions expected for both normal and off-normal operating conditions of the KP-FHR.