ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Jeremy Bittan
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 771-781
Technical Paper | doi.org/10.1080/00295639.2020.1743576
Articles are hosted by Taylor and Francis Online.
During a loss-of-coolant-accident (LOCA) transient in a pressurized water reactor (PWR), water from the primary circuit is lost at the break. PWR designs are equipped with safety systems (SS) such as safety injection or accumulators to inject water into the primary circuit and prevent the core from being degraded. Depending on the size, position, and orientation of the break, a part of the safety system injection (SSI) into the primary circuit will be lost at the break. This parameter has a significant influence on the time the core uncovers in case the SS are lost. MAAP5.04 enables users to define the part of SSI that is lost at the break. Apart from a double-ended–break LOCA transient, users struggle to define precisely the part of SSI lost at the break, but this choice can have an important impact on the transient key event times. Thanks to its detailed equations and nodalization, the reference Code for Analysis of Thermal Hydraulics during an Accident of Reactor and safety Evaluation (CATHARE) enables one to evaluate the part of SSI lost at the break. Numerous CATHARE calculations have been performed taking into account different break sizes, positions, and orientations to determine the part of SSI lost at the break in each case. A metamodel has been created from the constituted database and implemented in EDF MAAP5.04. This paper also presents the impact of these improvements on LOCA transients where SS are lost.