ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Jeremy Bittan
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 771-781
Technical Paper | doi.org/10.1080/00295639.2020.1743576
Articles are hosted by Taylor and Francis Online.
During a loss-of-coolant-accident (LOCA) transient in a pressurized water reactor (PWR), water from the primary circuit is lost at the break. PWR designs are equipped with safety systems (SS) such as safety injection or accumulators to inject water into the primary circuit and prevent the core from being degraded. Depending on the size, position, and orientation of the break, a part of the safety system injection (SSI) into the primary circuit will be lost at the break. This parameter has a significant influence on the time the core uncovers in case the SS are lost. MAAP5.04 enables users to define the part of SSI that is lost at the break. Apart from a double-ended–break LOCA transient, users struggle to define precisely the part of SSI lost at the break, but this choice can have an important impact on the transient key event times. Thanks to its detailed equations and nodalization, the reference Code for Analysis of Thermal Hydraulics during an Accident of Reactor and safety Evaluation (CATHARE) enables one to evaluate the part of SSI lost at the break. Numerous CATHARE calculations have been performed taking into account different break sizes, positions, and orientations to determine the part of SSI lost at the break in each case. A metamodel has been created from the constituted database and implemented in EDF MAAP5.04. This paper also presents the impact of these improvements on LOCA transients where SS are lost.