ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Katarzyna Borowiec, Tomasz Kozlowski, Caleb S. Brooks
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 737-747
Technical Paper | doi.org/10.1080/00295639.2020.1713671
Articles are hosted by Taylor and Francis Online.
The work presents validation of the TRAC/RELAP Advanced Computational Engine (TRACE) code for natural circulation two-phase flow in a vertical annulus. Natural circulation experiments were recently conducted for a vertical internally heated annulus at the Multiphase Thermo-Fluid Dynamics Laboratory at the University of Illinois. The experimental matrix consists of 107 experiments with system pressure in the range of 145 to 950 kPa and heat flux up to 275 kW/m2. Void fraction, gas velocity, and interfacial area concentration were measured in five axial locations along the test section with six measurements of bulk liquid temperature and pressure. To validate the capability of the TRACE code under natural circulation flow conditions, a complete model of the experimental facility was created and validated using forced convection and single-phase natural circulation data.
Sensitivity and uncertainty quantification were performed. The sensitivity to important simulation parameters was studied using Sobol’s variance decomposition and the Morris screening method. The sensitivity of boundary conditions on void fraction measurement was investigated. The sensitivity study has shown significant differences in model sensitivity between different experimental conditions. With heat flux being the most influential parameter for high-pressure cases without flashing and pressure, temperature and heat flux have a combined strong effect in the case of low-pressure experiments when flashing occurs. Additionally, higher uncertainty in void fraction prediction was observed for experimental conditions at low pressure with flashing.