ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Jean Baccou, Jinzhao Zhang, Philippe Fillion, Guillaume Damblin, Alessandro Petruzzi, Rafael Mendizábal, Francesc Reventos, Tomasz Skorek, Mathieu Couplet, Bertrand Iooss, Deog-Yeon Oh, Takeshi Takeda, Nils Sandberg
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 721-736
Technical Paper | doi.org/10.1080/00295639.2020.1759310
Articles are hosted by Taylor and Francis Online.
Uncertainty analysis is a key element in nuclear power plant deterministic safety analysis using best-estimate thermal-hydraulic codes and best-estimate-plus-uncertainty methodologies. If forward uncertainty propagation methods have now become mature for industrial applications, the input uncertainty quantification (IUQ) on the physical models still requires further investigations. The Organisation for Economic Co-operation and Development/Nuclear Energy Agency PREMIUM project attempted to benchmark the available IUQ methods, but observed a strong user effect due to the lack of best practices guidance. The SAPIUM project has been proposed toward the construction of a clear and shared systematic approach for IUQ. The main outcome of the project is a first “good-practices” document that can be exploited for safety study in order to reach consensus among experts on recommended practices as well as to identify remaining open issues for further developments. This paper describes the systematic approach that consists of five elements in a step-by-step approach to perform a meaningful model IUQ and validation as well as some good-practice guideline recommendations for each step.