ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Jun Fang, Meredith K. Purser, Cameron Smith, Ramesh Balakrishnan, Igor A. Bolotnov, Kenneth E. Jansen
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 676-689
Technical Paper | doi.org/10.1080/00295639.2020.1743577
Articles are hosted by Taylor and Francis Online.
Various flow regimes exist in a boiling water reactor (BWR) as the steam quality increases in the uprising coolant flow, from bubbly flow, slug/churn flow, to annular flow. The annular flow is characterized by the presence of a fast-moving gas core and the surrounding liquid film flowing on the conduit wall. In addition, entrained droplets can be observed in the gas core with ingested bubbles in the liquid film. The dynamics occurring on the wavy interface between the liquid film and gas core plays a crucial role in affecting the heat transfer rate and pressure drop within the BWR core. However, a fundamental understanding of annular flow is still lacking, partly due to the difficulty in obtaining detailed local data in annular flow experiments.
In the current study, a novel simulation framework is developed for the annular flow by coupling a computational fluid dynamics flow solver with state-of-the-art meshing software. The gas-liquid interface is tracked with the level set method. Based on the computed flow solutions, the computational mesh is dynamically adapted in memory to meet the local mesh resolution requirement. This iterative simulation-adaptation framework can ensure the fine mesh resolution across the interface, which not only helps mitigate the mass conservation degradation known to level set methods but also improves the representation of dramatic interface topological changes such as wave breaking and droplet entrainment. The present investigation will shed light onto the complex interfacial processes involved in annular flow and generate much needed simulation data for annular flow modeling.