ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
S. L. Sharma, J. R. Buchanan, M. A. Lopez de Bertodano
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 665-675
Technical Paper | doi.org/10.1080/00295639.2020.1744406
Articles are hosted by Taylor and Francis Online.
Thermally induced density wave instability (DWI) (Type-II) is an important phenomenon for two-phase flow industrial systems. Developing numerical tools and methods for the prediction of the DWI boundary is of importance in the design and safety of nuclear reactors. With the advent of computational fluid dynamics (CFD) in nuclear safety analysis, it is important to first verify the CFD results against existing theory and validate them with experimental data. In this work, a CFD two-fluid model (TFM) for DWI was implemented and verified against the theory of Ishii (1971). Closure relations were selected to approach the homogeneous equilibrium flow model. A steady-state verification of the model was carried out first. Then, dynamic verification was performed. Predictions of the stability boundary and the frequency of oscillations are in a good agreement with the theory. This study further verifies the dynamic capability of TFM CFD.