ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Chih-Wei Chang, Jun Fang, Nam T. Dinh
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 650-664
Technical Paper | doi.org/10.1080/00295639.2020.1712928
Articles are hosted by Taylor and Francis Online.
Reynolds-Averaged Navier-Stoke (RANS) models offer an alternative avenue in predicting flow characteristics when the corresponding experiments are difficult to achieve due to geometry complexity, limited budget, or knowledge. RANS models require the knowledge of subgrid scale physics to solve conservation equations for mass, energy, and momentum. Mechanistic turbulence models, such as k-ε, are generally evaluated and calibrated for specific flow conditions with various degrees of uncertainty. These models have limited capability to assimilate a substantial amount of data due to model form constraints. Meanwhile, deep learning (DL) has been proven to be universal approximators with the potential to assimilate available, relevant, and adequately evaluated data. Moreover, deep neural networks (DNNs) can create surrogate models without knowing function forms. Such a data-driven approach can be used in updating fluid models based on observations as opposed to hard-wiring models with precalibrated correlations.
The paper presents progress in applying DNNs to model Reynolds stress using two machine learning (ML) frameworks. A novel flow feature coverage mapping is proposed to quantify the physics coverage of DL-based closures. It can be used to examine the sufficiency of training data and input flow features for data-driven turbulence models. The case of a backward-facing step is formulated to demonstrate that not only can DNNs discover underlying correlation behind fluid data but also they can be implemented in RANS to predict flow characteristics without numerical stability issues. The presented research is a crucial stepping-stone toward the data-driven turbulence modeling, which potentially benefits the design of data-driven experiments that can be used to validate fluid models with ML-based fluid closures.