ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
H. Y. Yoon, I. K. Park, J. R. Lee, S. J. Lee, Y. J. Cho, S. J. Do, H. K. Cho, J. J. Jeong
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 633-649
Technical Paper | doi.org/10.1080/00295639.2020.1727698
Articles are hosted by Taylor and Francis Online.
A high-fidelity safety analysis method for pressurized water reactors (PWRs) is presented using a multiscale and multiphysics coupled code. Computational resolution of the conventional safety analysis can be greatly improved using this method in which the whole reactor vessel is modeled at a subchannel scale with around 5 million calculation meshes. Three-dimensional thermal hydraulics inside the reactor vessel is simulated using CUPID-RV with subchannel-scale thermal-hydraulic models for the reactor core. The subchannel models were validated using the legacy rod bundle experiments including single- and two-phase flow tests that were used in the validation of other subchannel analysis codes. The three-dimensional mesh was generated for the reactor vessel. Structured meshes were used in the core region for the subchannel model, and body-fitted unstructured meshes were applied for the downcomer, lower and upper plenums, and hot and cold legs. The number of meshes was optimized for a practical calculation. A three-dimensional core kinetics code (MASTER) and a one-dimensional system analysis code (MARS) were coupled with CUPID-RV for an accident analysis of PWRs. Subchannel-scale full-core steam line break accident analysis of the OPR1000 PWR was realized using the coupled code (MASTER/CUPID-RV/MARS) with a reasonable computation time, and thus, the present method can be used as a practical tool for three-dimensional safety analysis of PWRs.