ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Yimeng Chan, Sicong Xiao
Nuclear Science and Engineering | Volume 194 | Number 7 | July 2020 | Pages 554-571
Technical Paper | doi.org/10.1080/00295639.2020.1752045
Articles are hosted by Taylor and Francis Online.
The recently developed linear prolongation Coarse Mesh Finite Difference (lpCMFD) acceleration scheme, which employs a linear additive approach to update the scalar flux, has been shown to be more stable and effective than the conventional scaling-based Coarse Mesh Finite Difference (CMFD) method for accelerating the discrete ordinates (SN) neutron transport calculation using spatial finite difference discretization. In this paper, we study and extend the application of lpCMFD to accelerate the SN neutron transport calculation with spatial discretization using the Discontinuous Galerkin Finite Element Method (DGFEM), which generally involves linear- or higher-order space expansion functions. A function space mapping operator is proposed in this paper to project the lpCMFD linear-order correction flux to an arbitrary-order DGFEM basis function, which is implemented and tested on a one-dimensional (1-D) in-house–developed DGFEM-based SN code. The consistency between the lpCMFD accelerated results and the pure SN results is naturally guaranteed by employing upwind current information from DGFEM-based SN transport calculation to evaluate the drift coefficient. It was found from our numerical testing with the CMFD and the lpCMFD acceleration schemes on single-group fixed-source and k-eigenvalue problems that both acceleration schemes can reproduce the unaccelerated scalar flux and keff, respectively. Further numerical testing on a more realistic case is performed on a 1-D slice multi-energy-group problem based on the three-dimensional C5G7 mixed oxide (MOX) benchmark. It was found that by using the function space projector proposed in this paper, lpCMFD was stable and effective to accelerate the DGFEM-based SN neutron transport calculation for all coarse mesh sizes tested while CMFD diverged for large optical thickness.