ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Kodai Fukuda, Jun Nishiyama, Toru Obara
Nuclear Science and Engineering | Volume 194 | Number 7 | July 2020 | Pages 493-507
Technical Paper | doi.org/10.1080/00295639.2020.1743580
Articles are hosted by Taylor and Francis Online.
Transient analysis for possible prompt supercritical accidents of fuel debris in the Fukushima Daiichi Nuclear Power Station is quite important. However, unlike solution fuel systems, there is little knowledge about supercritical transient analysis in fuel debris systems. In particular, reactivity feedback effects, which may have a significant impact on the results of the analysis, are important and require further study. In particular, the impacts of radiolysis gas void and moderator boiling should be discussed. Thus, the purpose of this study is to clarify whether the reactivity feedback effects of radiolysis gas and boiling of the moderator impact the supercritical transient analysis in fuel debris systems. To accomplish this, we used a power profile obtained by the MIK code with the Doppler reactivity feedback effect; radiolysis gas analysis and heat transfer analysis were performed. For the radiolysis gas analysis, the AGNES2 model was modified to consider the difference between solution fuel and fuel debris systems. The heat transfer analysis used an OpenFOAM solver to perform conjugate heat transfer calculations. We found that the radiolysis gas void was negligible when probable G values, which are the generation number of molecules per absorbed energy, were used. In addition, the results showed that boiling could be also negligible under most conditions. However, we found that the boiling time may be earlier than the peak time of the power when the radius of the fuel debris particle is small. In this case, ignoring the boiling may give conservative results. These considerations should be included in future analyses.