ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Yoshiki Oshima, Tomohiro Endo, Akio Yamamoto, Yasuhiro Kodama, Yasunori Ohoka, Hiroaki Nagano
Nuclear Science and Engineering | Volume 194 | Number 6 | June 2020 | Pages 477-491
Technical Paper | doi.org/10.1080/00295639.2020.1722512
Articles are hosted by Taylor and Francis Online.
The impact of various parameters in the coarse mesh finite difference (CMFD) acceleration method on overall convergence behavior is investigated through numerical calculations using the method of characteristics (MOC). Four parameters appearing in the CMFD acceleration with MOC, i.e., scalar flux distribution in flat flux regions (FFRFlux), the scalar flux distribution in CMFD meshes (CMFDFlux), homogenized cross sections (HXSs) in CMFD meshes, and current correction factors (CCFs), are considered. Parts of these four parameters are fixed to the converged values throughout iterations in order to estimate their impact on convergence. Numerical calculations are carried out for Korea Advanced Institute of Science and Technology’s (KAIST’s) benchmark problem KAIST-2A, which is a heterogeneous and multigroup problem, and the number of outer iterations to reach convergence is evaluated. The impact of geometric heterogeneity and cross-section homogenization in the CMFD acceleration has not been considered in linearized Fourier analysis so far. The calculation results indicate that (1) convergence of HXS has little impact on the overall convergence, (2) convergence of FFRFlux is dominant followed by CCF when a CMFD mesh is optically thin, and (3) convergence of FFRFlux is dominant when a CMFD mesh is optically thick and contains many flat flux regions.