ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jiashuang Wan, Pengfei Wang
Nuclear Science and Engineering | Volume 194 | Number 6 | June 2020 | Pages 433-446
Technical Paper | doi.org/10.1080/00295639.2019.1710419
Articles are hosted by Taylor and Francis Online.
The task of this investigation is to design a controller that has a strong robustness in various operating conditions. A new structure of state feedback assisted classical control (SFACC) that uses a differential lag compensator in the inner classical control loop is proposed to improve the robustness of original SFACC. The linear quadratic Gaussian with loop transfer recovery (LQG/LTR) at the plant output is employed to design the robust controller in the outer control loop. A comparison of the performance and robustness between the gain-insensitive controller and an existing LQG/LTR controller is made by nonlinear simulations. The proposed gain-insensitive LQG/LTR controller can give satisfying performance for both reactor power and coolant temperature over a wide range of reactor operations.