ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Fernando De La Torre Aguilar, Sudarshan K. Loyalka
Nuclear Science and Engineering | Volume 194 | Number 5 | May 2020 | Pages 373-404
Technical Paper | doi.org/10.1080/00295639.2019.1707153
Articles are hosted by Taylor and Francis Online.
The study of the nuclear source term requires the computation of aerosol dynamics. Solutions to the aerosol general dynamic equation (GDE) are difficult to obtain by analytical or numerical methods when more realistic problems are considered. The direct simulation Monte Carlo (DSMC) technique is capable of simulating aerosol evolution reducing simplifications in the implementation of the aerosol GDE. In this work we present a DSMC program for the simulation of multicomponent polydisperse aerosol evolution, with the successful integration of the following processes: deposition, electrostatic dispersion, coagulation (considering charge effects), and condensation, assuming a spatially homogeneous medium and spherical particles. Two problems with different particle compositions were simulated to obtain information about the interactions through the different processes and the interacting particles as well as particle number and mass distributions with discrimination of charge levels. This information allowed us to explore the synergistic nature of these processes. It was found that the problem with denser particles had an overall stronger activity in coagulation and initially a stronger activity in deposition compared to the problem with less dense particles.