ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Luke J. Kersting, Alex Robinson, Eli Moll, Philip Britt, Lewis Gross, Douglass Henderson
Nuclear Science and Engineering | Volume 194 | Number 5 | May 2020 | Pages 350-372
Technical Paper | doi.org/10.1080/00295639.2019.1701344
Articles are hosted by Taylor and Francis Online.
A new single scattering adjoint transport capability was implemented in Framework for REsearch in Nuclear ScIence and Engineering (FRENSIE). The Evaluated Electron Data Library (EEDL) was used to generate new tabulated adjoint data. All adjoint data were generated using refined EEDL data and a unit-base grid policy. Verification and validation tests were performed for the adjoint electron transport in FRENSIE. Adjoint simulation results were compared with forward simulation results for a self-adjoint infinite medium problem as well as experimental results for electron low-energy backscattering coefficients. Only a refined unit-base grid policy and coupled elastic scattering were tested for adjoint tests. The adjoint transport capability shows good agreement with the forward transport capability. The adjoint atomic excitation physics were unable to model a discrete forward source. For the self-adjoint infinite medium problems, the adjoint results matched the forward results to within 2% except near the cutoff energy. For backscattering coefficients, the adjoint results matched the forward results to within 5% for all converged bins. Overall, the adjoint transport capability was in good agreement with the forward transport capability validating the adjoint transport scheme.