ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
N. V. Kornilov, S. M. Grimes, T. N. Massey, C. E. Brient, D. E. Carter, J. E. O’Donnell, K. W. Cooper, A. D. Carlson, F. B. Bateman, C. R. Heimbach, N. Boukharouba
Nuclear Science and Engineering | Volume 194 | Number 5 | May 2020 | Pages 335-349
Technical Paper | doi.org/10.1080/00295639.2019.1702408
Articles are hosted by Taylor and Francis Online.
The n-p scattering angular distribution was measured with 14.9 MeV incident neutrons produced at the neutron facility of Ohio University. The traditional time-of-flight technique with neutron-gamma discrimination was applied for the measurement of the number and energy of scattered neutrons. The scattering angle varied from 20 to 65 deg (laboratory system) in 5 deg incremental steps corresponding to an ejectile energy range from 13.16 to 2.66 MeV. The efficiency of the neutron detectors was measured in the energy range 2 to 9 MeV relative to the 252Cf standard and was calculated using Monte Carlo methods in the 2 to 14 MeV energy range. Two methods of analysis were applied for experimental and simulated data: a traditional approach with a fixed threshold ~0.1MeVee and a dynamic threshold approach. The efficiencies determined by both methods are in excellent agreement for simulated and experimental results within the energy interval 2 to 9 MeV. The experimental (<9 MeV) and calculated efficiencies (>9 MeV) were applied for evaluation of the n-p scattering experimental result. The corrections for neutron attenuation in the “scatter-detector” were calculated with analytical formulas and by the Monte Carlo method. Additional minor corrections for edge effect, C(n,n’)3α background and dead time were also included. The present data agree with recent evaluations for the n-p angular distribution within about 1.6%. The current state-of-the-art of experimental uncertainties that can be realized for a neutron counting experiment were reached in this investigation. An additional correlation analysis allows us to conclude that the standard deviation connected with existing correlations may be the main component of the total uncertainty.