ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
N. V. Kornilov, S. M. Grimes, T. N. Massey, C. E. Brient, D. E. Carter, J. E. O’Donnell, K. W. Cooper, A. D. Carlson, F. B. Bateman, C. R. Heimbach, N. Boukharouba
Nuclear Science and Engineering | Volume 194 | Number 5 | May 2020 | Pages 335-349
Technical Paper | doi.org/10.1080/00295639.2019.1702408
Articles are hosted by Taylor and Francis Online.
The n-p scattering angular distribution was measured with 14.9 MeV incident neutrons produced at the neutron facility of Ohio University. The traditional time-of-flight technique with neutron-gamma discrimination was applied for the measurement of the number and energy of scattered neutrons. The scattering angle varied from 20 to 65 deg (laboratory system) in 5 deg incremental steps corresponding to an ejectile energy range from 13.16 to 2.66 MeV. The efficiency of the neutron detectors was measured in the energy range 2 to 9 MeV relative to the 252Cf standard and was calculated using Monte Carlo methods in the 2 to 14 MeV energy range. Two methods of analysis were applied for experimental and simulated data: a traditional approach with a fixed threshold ~0.1MeVee and a dynamic threshold approach. The efficiencies determined by both methods are in excellent agreement for simulated and experimental results within the energy interval 2 to 9 MeV. The experimental (<9 MeV) and calculated efficiencies (>9 MeV) were applied for evaluation of the n-p scattering experimental result. The corrections for neutron attenuation in the “scatter-detector” were calculated with analytical formulas and by the Monte Carlo method. Additional minor corrections for edge effect, C(n,n’)3α background and dead time were also included. The present data agree with recent evaluations for the n-p angular distribution within about 1.6%. The current state-of-the-art of experimental uncertainties that can be realized for a neutron counting experiment were reached in this investigation. An additional correlation analysis allows us to conclude that the standard deviation connected with existing correlations may be the main component of the total uncertainty.