ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Lei Jin, Kaushik Banerjee
Nuclear Science and Engineering | Volume 194 | Number 3 | March 2020 | Pages 190-206
Technical Paper | doi.org/10.1080/00295639.2019.1678104
Articles are hosted by Taylor and Francis Online.
Monte Carlo (MC) simulation is used to solve the eigenvalue form of the Boltzmann transport equation to estimate various parameters such as fuel pin flux distributions that are crucial for the safe and efficient operation of nuclear systems (e.g., a nuclear reactor). Monte Carlo eigenvalue simulation uses a sample mean over many stationary cycles (iterations) to estimate various parameters important to nuclear systems. A variance estimate of the sample mean is often used for calculating the confidence intervals. However, MC eigenvalue simulation variance estimators that ignore the intercycle correlation underestimate the true variance of the estimated quantity. This paper presents novel data-adaptive approaches based on a simple autoregressive (AR) model and sigmoid functions to improve MC variance estimation. The standard MC sample-based variance estimator (or naïve estimator) and the spectral density–based MC variance estimator are enhanced by adding data-adaptive components that reduce their bias and improve performance. By investigating the frequency pattern of the AR(1) (order 1) model, two adaptive spectral estimators and one adaptive naïve estimator are proposed. The proposed estimators manifest superior performance when applied to three test problems compared to the standard spectral density–based estimator previously introduced by the authors. These new estimators are straightforward, as they use online algorithms and do not require storage of tallies from all active cycles.