ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Lei Jin, Kaushik Banerjee
Nuclear Science and Engineering | Volume 194 | Number 3 | March 2020 | Pages 190-206
Technical Paper | doi.org/10.1080/00295639.2019.1678104
Articles are hosted by Taylor and Francis Online.
Monte Carlo (MC) simulation is used to solve the eigenvalue form of the Boltzmann transport equation to estimate various parameters such as fuel pin flux distributions that are crucial for the safe and efficient operation of nuclear systems (e.g., a nuclear reactor). Monte Carlo eigenvalue simulation uses a sample mean over many stationary cycles (iterations) to estimate various parameters important to nuclear systems. A variance estimate of the sample mean is often used for calculating the confidence intervals. However, MC eigenvalue simulation variance estimators that ignore the intercycle correlation underestimate the true variance of the estimated quantity. This paper presents novel data-adaptive approaches based on a simple autoregressive (AR) model and sigmoid functions to improve MC variance estimation. The standard MC sample-based variance estimator (or naïve estimator) and the spectral density–based MC variance estimator are enhanced by adding data-adaptive components that reduce their bias and improve performance. By investigating the frequency pattern of the AR(1) (order 1) model, two adaptive spectral estimators and one adaptive naïve estimator are proposed. The proposed estimators manifest superior performance when applied to three test problems compared to the standard spectral density–based estimator previously introduced by the authors. These new estimators are straightforward, as they use online algorithms and do not require storage of tallies from all active cycles.