ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Lei Jin, Kaushik Banerjee
Nuclear Science and Engineering | Volume 194 | Number 3 | March 2020 | Pages 190-206
Technical Paper | doi.org/10.1080/00295639.2019.1678104
Articles are hosted by Taylor and Francis Online.
Monte Carlo (MC) simulation is used to solve the eigenvalue form of the Boltzmann transport equation to estimate various parameters such as fuel pin flux distributions that are crucial for the safe and efficient operation of nuclear systems (e.g., a nuclear reactor). Monte Carlo eigenvalue simulation uses a sample mean over many stationary cycles (iterations) to estimate various parameters important to nuclear systems. A variance estimate of the sample mean is often used for calculating the confidence intervals. However, MC eigenvalue simulation variance estimators that ignore the intercycle correlation underestimate the true variance of the estimated quantity. This paper presents novel data-adaptive approaches based on a simple autoregressive (AR) model and sigmoid functions to improve MC variance estimation. The standard MC sample-based variance estimator (or naïve estimator) and the spectral density–based MC variance estimator are enhanced by adding data-adaptive components that reduce their bias and improve performance. By investigating the frequency pattern of the AR(1) (order 1) model, two adaptive spectral estimators and one adaptive naïve estimator are proposed. The proposed estimators manifest superior performance when applied to three test problems compared to the standard spectral density–based estimator previously introduced by the authors. These new estimators are straightforward, as they use online algorithms and do not require storage of tallies from all active cycles.