ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Mohammad Alrwashdeh, Saeed A. Alameri, Ahmed K. Alkaabi
Nuclear Science and Engineering | Volume 194 | Number 2 | February 2020 | Pages 163-167
Technical Paper | doi.org/10.1080/00295639.2019.1672511
Articles are hosted by Taylor and Francis Online.
The double heterogeneity of the tristructural isotropic (TRISO) fuel in the prismatic-core advanced high-temperature reactor should be accurately and correctly modeled and analyzed, especially for a large-scale loaded with the double-heterogeneity effect. The reactivity-equivalent physical transformation method was developed and employed to enable homogenizing TRISO fuel in a high temperature reactor considering the double heterogeneity and taking into account the large problem involved in performing the whole-core burnup calculation using Monte Carlo transport codes with double-heterogeneity problems. In this work, the heterogeneous effects of a collision of probability calculation method were used to represent the effects of scattering anisotropy on the leakage rates and the isotropic streaming effects due to low optical density in the model. The WIMS and DRAGON codes have been used to perform the calculations of double heterogeneity for the TRISO fuel, fuel compact, and fuel element and the results are compared with the SERPENT Monte Carlo code.