ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Anek Kumar, Umasankari Kannan, S. Ganesan
Nuclear Science and Engineering | Volume 194 | Number 1 | January 2020 | Pages 32-43
Technical Paper | doi.org/10.1080/00295639.2019.1645502
Articles are hosted by Taylor and Francis Online.
The general geometry continuous-energy Monte Carlo code M3C is currently under development at the Bhabha Atomic Research Centre for reactor physics calculations. The development of the Monte Carlo code M3C for reactor design entails the use of continuous-energy nuclear data and Monte Carlo simulations for each of the neutron interaction processes. This paper describes the current status of the development of the code. The performance and accuracy of the code in application to a variety of problems have been investigated. The important features of this code are treatment of heterogeneous lattices by general geometry, use of point cross sections along with unionized energy grid approach, thermal scattering model for low-energy treatment, probability table treatment in unresolved resonance range, and capability of handling the microscopic fuel particles (TRISO) dispersed randomly, which is very useful in modeling high temperature gas-cooled reactor fuels. Apart from all of the important features in any Monte Carlo code available worldwide, the M3C code has an advanced capability to handle the geometry, which is not described by mathematical equations but only represented by the geometrical points. The code has been validated for its accuracy against a large number of sample problems covering a wide range from simple (like spherical) to complex geometry (like pressurized heavy water reactor lattice) and including randomly dispersed TRISO fuel particle systems. The code is presently restricted to assembly-level calculations.