ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Inhyung Kim, HyeonTae Kim, Yonghee Kim
Nuclear Science and Engineering | Volume 194 | Number 1 | January 2020 | Pages 14-31
Technical Paper | doi.org/10.1080/00295639.2019.1654815
Articles are hosted by Taylor and Francis Online.
This paper presents a systematic way to truncate the high-fidelity Monte Carlo (MC) solution to reduce the computational cost without compromising the essential reliability of the solution. Based on the fine-mesh finite difference (FMFD) acceleration for the MC analysis, the deterministic truncation of the Monte Carlo (DTMC) solution method is developed and investigated for a systematic approximation to the MC solution of the reactor eigenvalue problem. This deterministic solution is used for the acceleration of the MC simulation as well as the solution prediction itself. The concept, motivations, and challenges of the DTMC method are described in detail, and theoretical backgrounds of the FMFD method are discussed. In addition, an unbiased ratio estimator for more accurate FMFD parameter generation and a modified particle ramp-up method for the determination of optimal generation size in the MC simulation are also introduced and explained. Both the C5G7 benchmark and a small modular reactor (SMR) core are analyzed to characterize the numerical performance of the DTMC method in this work. Convergence behavior of the fission source distribution is examined, and reactor parameters such as the multiplication factor and three-dimensional pin power distribution are estimated and compared to the reference solution. The stochastic features of the DTMC solutions are also discussed in terms of the apparent and real standard deviations. For the pin power distribution, the root-mean-square error and relative error for the reactor core are also evaluated and compared. The computing time and figure of merit are compared for each method.