ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Jaeha Kim, Yonghee Kim
Nuclear Science and Engineering | Volume 194 | Number 1 | January 2020 | Pages 1-13
Technical Paper | doi.org/10.1080/00295639.2019.1642016
Articles are hosted by Taylor and Francis Online.
This paper presents the methodology and performance of the Hybrid Coarse-Mesh Finite Difference (HCMFD) algorithm for transient pinwise analyses of three-dimensional (3-D) pressurized water reactor (PWR) problems. The time-dependent neutron diffusion equations and their applications in two steps of the HCMFD algorithm, i.e., local and global iterations, are introduced in detail. Taking into account the characteristics of the local-global nonlinear HCMFD iterations, an optimization strategy to minimize the computing time of the transient HCMFD calculation is established by focusing on the balance between the number of local and global calculations. Based on the optimization strategy, the actual computational performance of the transient HCMFD algorithm, in view of both computing time and accuracy, is evaluated for the core of a big-sized conventional PWR in this work. To demonstrate the effectiveness of the optimized iteration strategy, various slow and fast transients including a rod ejection transient are simulated by the transient HCMFD algorithm. It is clearly shown that a 3-D pin-resolved whole-core transient solution for a big PWR can be obtained in a reasonably short computing time by the transient 3-D HCMFD algorithm.