ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Jaeha Kim, Yonghee Kim
Nuclear Science and Engineering | Volume 194 | Number 1 | January 2020 | Pages 1-13
Technical Paper | doi.org/10.1080/00295639.2019.1642016
Articles are hosted by Taylor and Francis Online.
This paper presents the methodology and performance of the Hybrid Coarse-Mesh Finite Difference (HCMFD) algorithm for transient pinwise analyses of three-dimensional (3-D) pressurized water reactor (PWR) problems. The time-dependent neutron diffusion equations and their applications in two steps of the HCMFD algorithm, i.e., local and global iterations, are introduced in detail. Taking into account the characteristics of the local-global nonlinear HCMFD iterations, an optimization strategy to minimize the computing time of the transient HCMFD calculation is established by focusing on the balance between the number of local and global calculations. Based on the optimization strategy, the actual computational performance of the transient HCMFD algorithm, in view of both computing time and accuracy, is evaluated for the core of a big-sized conventional PWR in this work. To demonstrate the effectiveness of the optimized iteration strategy, various slow and fast transients including a rod ejection transient are simulated by the transient HCMFD algorithm. It is clearly shown that a 3-D pin-resolved whole-core transient solution for a big PWR can be obtained in a reasonably short computing time by the transient 3-D HCMFD algorithm.