ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Songtao Yin, Hongdong Zhen, Lei Zhang, Bo Cheng, Ningning Wang, Haijun Wang
Nuclear Science and Engineering | Volume 193 | Number 12 | December 2019 | Pages 1403-1410
Technical Paper | doi.org/10.1080/00295639.2019.1642675
Articles are hosted by Taylor and Francis Online.
Safety analyses of pressurized water reactors and boiling water reactors in the event of small-break loss-of-coolant accidents strongly depend on leakage rate predictions using two-phase critical flow models. The paper aims to revise the critical flow criterion and consider the nonequilibrium phenomena of critical flows in constructing a modified two-phase critical flow model. The model predictions exhibit strong similarities with the experimental values, with prediction deviations of 14.4% for mass fluxes and 19.3% for outlet pressure. The compiled code, according to the proposed model, can be exploited in pressure pipeline designs, providing the theoretical basis for leak-before-break analyses.