ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Dean Wang
Nuclear Science and Engineering | Volume 193 | Number 12 | December 2019 | Pages 1339-1354
Technical Paper | doi.org/10.1080/00295639.2019.1638660
Articles are hosted by Taylor and Francis Online.
The SN transport equation asymptotically tends to an equivalent diffusion equation in the limit of optically thick systems with small absorption and sources. A spatial discretization of the SN equation is of practical interest if it possesses the optically thick diffusion limit. Such a numerical scheme will yield accurate solutions for diffusive problems if the spatial mesh size is thin with respect to a diffusion length, whereas the mesh cells are thick in terms of a mean free path. Many spatial discretization methods have been developed for the SN transport equation, but only a few of them can obtain the thick diffusion limit under certain conditions. This paper presents a theoretical result that simply states that the mesh size required for a finite difference scheme to attain the diffusion limit is , where is the order of accuracy of spatial discretization, is the “diffusion” mesh size that can be many mean free paths thick, and is a small positive scaling parameter that can be defined as the ratio of a particle mean free path to a characteristic scale length of the system. Numerical results for schemes such as the Diamond Difference method, Step Characteristic method, Step Difference method, Second-Order Upwind method, and Lax-Friedrichs Weighted Essentially Non-Oscillatory method of the third order (LF-WENO3) are presented that demonstrate the validity and accuracy of our analysis.