ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Dean Wang
Nuclear Science and Engineering | Volume 193 | Number 12 | December 2019 | Pages 1339-1354
Technical Paper | doi.org/10.1080/00295639.2019.1638660
Articles are hosted by Taylor and Francis Online.
The SN transport equation asymptotically tends to an equivalent diffusion equation in the limit of optically thick systems with small absorption and sources. A spatial discretization of the SN equation is of practical interest if it possesses the optically thick diffusion limit. Such a numerical scheme will yield accurate solutions for diffusive problems if the spatial mesh size is thin with respect to a diffusion length, whereas the mesh cells are thick in terms of a mean free path. Many spatial discretization methods have been developed for the SN transport equation, but only a few of them can obtain the thick diffusion limit under certain conditions. This paper presents a theoretical result that simply states that the mesh size required for a finite difference scheme to attain the diffusion limit is , where is the order of accuracy of spatial discretization, is the “diffusion” mesh size that can be many mean free paths thick, and is a small positive scaling parameter that can be defined as the ratio of a particle mean free path to a characteristic scale length of the system. Numerical results for schemes such as the Diamond Difference method, Step Characteristic method, Step Difference method, Second-Order Upwind method, and Lax-Friedrichs Weighted Essentially Non-Oscillatory method of the third order (LF-WENO3) are presented that demonstrate the validity and accuracy of our analysis.