ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Michael Jarrett, Brendan Kochunas, Edward Larsen, Thomas Downar
Nuclear Science and Engineering | Volume 193 | Number 12 | December 2019 | Pages 1291-1309
Technical Paper | doi.org/10.1080/00295639.2019.1627176
Articles are hosted by Taylor and Francis Online.
A new method for calculating anisotropic radial transverse leakage (TL) in a two-dimensional (2D)/one-dimensional (1D) transport method is derived and implemented in MPACT. This method makes use of parity in the polar angle only to form the 2D transport equations for the 2D/1D method. The even-parity component is solved on a fine mesh using the method of characteristics (MOC), while the odd-parity component is solved on a coarse mesh using S. The anisotropic radial TL on the coarse cell boundaries is calculated by combining the even- and odd-parity components. The new method is faster than a similar previous method because it delegates half of the work required to calculate the solution of the 2D transport problem to a coarse-mesh S solver, which is more than ten times faster than the fine-mesh MOC solver. The results show that the accuracy of the new method is equivalent to that of the previously implemented method for anisotropic TL, with a significant speedup. With azimuthally isotropic TL, the new method reduces the computational overhead compared to the standard method from 58% to 5% for the three-dimensional (3D) C5G7 benchmark problems. With azimuthally anisotrop\ic TL using Fourier expansion, the new method reduces the overhead from 84% to 37%. This is important because the accuracy of the 2D/1D method is limited by the isotropic TL approximation. With anisotropic TL, the accuracy of 2D/1D is equivalent or comparable to 3D transport, but there is a significant computational cost associated with calculating the anisotropic TL. The method presented provides a faster way to calculate the anisotropic TL, giving the 2D/1D method significantly increased accuracy with only a modest increase in computational requirements compared to isotropic 2D/1D.