ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Akash Tondon, Mohinder Singh, B. S. Sandhu, Bhajan Singh
Nuclear Science and Engineering | Volume 193 | Number 11 | November 2019 | Pages 1265-1275
Technical Paper | doi.org/10.1080/00295639.2019.1614802
Articles are hosted by Taylor and Francis Online.
The voxel, defined as the volume of the intersection between incident (primary) and scattered beams, plays an important role in the localization of defects in samples having several interests. In this work, the gamma rays emitted from a 137Cs radioactive source (having the strength of 222 GBq) are scattered from various regions of a wood sample. The scattered gamma flux is detected by an NaI(Tl) scintillation detector placed at 110 deg to the primary gamma-ray beam. Defect (decay) in the wood is simulated by drilling two collinear cylindrical flaws (having diameters of 0.8 and 1.2 cm) in the wood sample and then filling it with a mixture of sawdust and glue. Three sets of collimators with diameters of 6, 7, and 8 mm for the source and detector are used to vary the voxel size (volume). It has been found that better contrast (29.43% for a 1.2-cm defect and 16.37% for an 0.8-cm defect) is achieved for the smallest voxel (16.13 cm3) in comparison to the other two voxels (25.65 and 38.36 cm3). Further, better contrast for the smallest voxel is confirmed by comparing gray images obtained using MATLAB for all three voxel sizes at different scan positions. It has been concluded that for a given experimental setup, the accuracy of defect (decay) detection demands reduced voxel size.