ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Hao Li, Ganglin Yu, Shanfang Huang, Mengfei Zhou, Guanlin Shi, Kan Wang
Nuclear Science and Engineering | Volume 193 | Number 11 | November 2019 | Pages 1186-1218
Technical Paper | doi.org/10.1080/00295639.2019.1614800
Articles are hosted by Taylor and Francis Online.
Geometric sensitivity analyses of the -eigenvalue have many applications in analyses of geometric uncertainty, calculations of differential control rod worth, and searches for critical geometry. The adjoint-weighted first-order geometric sensitivity theory is widely used and has continuously evolved with the Monte Carlo methods. However, the existing adjoint-weighted algorithm can do only uniform isotropic expansions or contractions of surfaces. The adjoint-weighted algorithm also requires computation of adjoint-weighted scattering and fission reaction rates exactly at material interfaces, which has an infinitesimal probability in reality. This paper presents an improved geometry adjoint-weighted perturbation algorithm that is incorporated into the continuous-energy Reactor Monte Carlo (RMC) code. The improvement of the adjoint-weighted algorithm is decomposed into three steps for constructing a cross-section function of geometric parameters using logical expressions, calculating the derivative of the cross-section function, and estimating the adjoint-weighted surface reaction rates. The improved algorithm can accommodate common one-parameter geometric perturbations of internal interfaces or boundary surfaces as well as those of cells as long as the perturbed cells can be described by logical expressions of spatial surface equations. The perturbation algorithm is compared with a direct difference method, the linear least-squares fitting method with central differences, for several typical geometric perturbations including translation, fixed-axis rotation, and uniform isotropic/anisotropic expansion transformations of planar, spherical, cylindrical, and conical surfaces. The differences between the two methods are not more than 3% and not more than 3 for the majority of the test examples. Even though the perturbation algorithm has higher figures of merit than the direct difference method for the majority of the test examples, there is no guarantee that the former can always be more efficient than the latter. The limitation in the efficiency of the perturbation algorithm was demonstrated by the totally reflecting light water reactor pin model.