ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Hao Li, Ganglin Yu, Shanfang Huang, Mengfei Zhou, Guanlin Shi, Kan Wang
Nuclear Science and Engineering | Volume 193 | Number 11 | November 2019 | Pages 1186-1218
Technical Paper | doi.org/10.1080/00295639.2019.1614800
Articles are hosted by Taylor and Francis Online.
Geometric sensitivity analyses of the -eigenvalue have many applications in analyses of geometric uncertainty, calculations of differential control rod worth, and searches for critical geometry. The adjoint-weighted first-order geometric sensitivity theory is widely used and has continuously evolved with the Monte Carlo methods. However, the existing adjoint-weighted algorithm can do only uniform isotropic expansions or contractions of surfaces. The adjoint-weighted algorithm also requires computation of adjoint-weighted scattering and fission reaction rates exactly at material interfaces, which has an infinitesimal probability in reality. This paper presents an improved geometry adjoint-weighted perturbation algorithm that is incorporated into the continuous-energy Reactor Monte Carlo (RMC) code. The improvement of the adjoint-weighted algorithm is decomposed into three steps for constructing a cross-section function of geometric parameters using logical expressions, calculating the derivative of the cross-section function, and estimating the adjoint-weighted surface reaction rates. The improved algorithm can accommodate common one-parameter geometric perturbations of internal interfaces or boundary surfaces as well as those of cells as long as the perturbed cells can be described by logical expressions of spatial surface equations. The perturbation algorithm is compared with a direct difference method, the linear least-squares fitting method with central differences, for several typical geometric perturbations including translation, fixed-axis rotation, and uniform isotropic/anisotropic expansion transformations of planar, spherical, cylindrical, and conical surfaces. The differences between the two methods are not more than 3% and not more than 3 for the majority of the test examples. Even though the perturbation algorithm has higher figures of merit than the direct difference method for the majority of the test examples, there is no guarantee that the former can always be more efficient than the latter. The limitation in the efficiency of the perturbation algorithm was demonstrated by the totally reflecting light water reactor pin model.