ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Christopher M. Perfetti, Bradley T. Rearden
Nuclear Science and Engineering | Volume 193 | Number 10 | October 2019 | Pages 1090-1128
Technical Paper | doi.org/10.1080/00295639.2019.1604048
Articles are hosted by Taylor and Francis Online.
Criticality safety analyses rely on the availability of relevant benchmark experiments to determine justifiable margins of subcriticality. When a target application lacks neutronically similar benchmark experiments, validation studies must provide justification to the regulator that the impact of modeling and simulation limitations is well understood for the application and often must provide additional subcritical margin to ensure safe operating conditions. This study estimated the computational bias in the critical eigenvalue for several criticality safety applications supported by only a few relevant benchmark experiments. The accuracy of the following three methods for predicting computational biases was evaluated: the Upper Subcritical Limit STATisticS (USLSTATS) trending analysis method; the Whisper nonparametric method; and TSURFER, which is based on the generalized linear least-squares technique. These methods were also applied to estimate computational biases and recommended upper subcriticality limits for several critical experiments with known biases and for several cases from a blind benchmark study. The methods are evaluated based on both the accuracy of their predicted computation bias and upper subcriticality limit estimates, as well as on the consistency of the methods’ estimates, as the model parameters, covariance data libraries, and set of available benchmark data were varied. Data assimilation methods typically have not been used for criticality safety licensing activities, and this study explores a methodology to address concerns regarding the reliability of such methods in criticality safety bias prediction applications.