ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Christopher M. Perfetti, Bradley T. Rearden
Nuclear Science and Engineering | Volume 193 | Number 10 | October 2019 | Pages 1090-1128
Technical Paper | doi.org/10.1080/00295639.2019.1604048
Articles are hosted by Taylor and Francis Online.
Criticality safety analyses rely on the availability of relevant benchmark experiments to determine justifiable margins of subcriticality. When a target application lacks neutronically similar benchmark experiments, validation studies must provide justification to the regulator that the impact of modeling and simulation limitations is well understood for the application and often must provide additional subcritical margin to ensure safe operating conditions. This study estimated the computational bias in the critical eigenvalue for several criticality safety applications supported by only a few relevant benchmark experiments. The accuracy of the following three methods for predicting computational biases was evaluated: the Upper Subcritical Limit STATisticS (USLSTATS) trending analysis method; the Whisper nonparametric method; and TSURFER, which is based on the generalized linear least-squares technique. These methods were also applied to estimate computational biases and recommended upper subcriticality limits for several critical experiments with known biases and for several cases from a blind benchmark study. The methods are evaluated based on both the accuracy of their predicted computation bias and upper subcriticality limit estimates, as well as on the consistency of the methods’ estimates, as the model parameters, covariance data libraries, and set of available benchmark data were varied. Data assimilation methods typically have not been used for criticality safety licensing activities, and this study explores a methodology to address concerns regarding the reliability of such methods in criticality safety bias prediction applications.