ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Madicken Munk, Rachel N. Slaybaugh
Nuclear Science and Engineering | Volume 193 | Number 10 | October 2019 | Pages 1055-1089
Technical Paper | doi.org/10.1080/00295639.2019.1586273
Articles are hosted by Taylor and Francis Online.
Methods for deep-penetration radiation transport remain important for radiation shielding, nonproliferation, nuclear threat reduction, and medical applications. As these applications become more ubiquitous, the need for accurate and reliable transport methods appropriate for these systems persists. For such systems, hybrid methods often obtain reliable answers in the shortest time by leveraging the speed and uniform uncertainty distribution of a deterministic solution to bias Monte Carlo transport and reduce the variance in the solution. This work reviews the state of the art among such hybrid methods. First, we summarize variance reduction (VR) for Monte Carlo radiation transport and existing efforts to automate these techniques. Relations among VR, importance, and the adjoint solution of the neutron transport equation are then discussed. Based on this exposition, the work transitions from theory to a critical review of existing VR implementations in modern nuclear engineering software. At present, the Consistent Adjoint-Driven Importance Sampling (CADIS) and Forward-Weighted Consistent Adjoint-Driven Importance Sampling (FW-CADIS) hybrid methods are the gold standard by which to reduce the variance in problems that have deeply penetrating radiation. The CADIS and FW-CADIS methods use an adjoint scalar flux to generate VR parameters for Monte Carlo radiation transport. Additionally, efforts to incorporate angular information into VR methods for Monte Carlo are summarized. Finally, we assess various implementations of these methods and the degree to which they improve VR for their target applications.