ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K.’s NWS gets input from young people on geological disposal
Nuclear Waste Services, the radioactive waste management subsidiary of the United Kingdom’s Nuclear Decommissioning Authority, has reported on its inaugural year of the National Youth Forum on Geological Disposal forum. NWS set up the initiative, in partnership with the environmental consultancy firm ARUP and the not-for-profit organization The Young Foundation, to give young people the chance to share their views on the government’s plans to develop a geological disposal facility (GDF) for the safe, secure, and long-term disposal of radioactive waste.
Argala Srivastava, K. P. Singh, Amod Kishore Mallick, Umasankari Kannan, S. B. Degweker
Nuclear Science and Engineering | Volume 193 | Number 9 | September 2019 | Pages 1044-1053
Technical Note | doi.org/10.1080/00295639.2019.1596721
Articles are hosted by Taylor and Francis Online.
The use of the Monte Carlo (MC) method for obtaining higher modes is an active area of current research. The method faces several difficulties in its implementation for practical problems. The study of simpler models in this context may be expected to provide insights into some of these problems. This technical note describes the development of a fission matrix algorithm based on the diffusion theory MC model to obtain fundamental and higher λ eigenvalues and eigenvectors (modes) of a reactor. A method for estimating variance in the estimated eigenvalues using first-order perturbation theory is also developed. The algorithm has been implemented in the space-time–kinetics MC code KINMC. The performance of the method for calculating higher eigenvalues and higher eigenvectors has been verified through comparison of the eigenvalues thus obtained with the results of other deterministic codes. Results of computation of eigenvalues and eigenvectors up to six modes are presented in this technical note.