ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Rei Kimura, Satoshi Wada
Nuclear Science and Engineering | Volume 193 | Number 9 | September 2019 | Pages 1013-1022
Technical Paper | doi.org/10.1080/00295639.2019.1576454
Articles are hosted by Taylor and Francis Online.
A small modular reactor (SMR) is a promising candidate for future nuclear energy; therefore, many organizations are developing SMRs. Some SMRs have a power output higher than 100 MW(electric). This paper, however, describes a much smaller reactor of less than 10-MW(electric) power output: a microreactor. The microreactor shares the same advantages as SMRs, i.e., passive safety, portability, and maintainability. This paper studies a calcium hydride (CaH2) heat pipe–cooled reactor in which heat pipes and CaH2 accomplish passive removal of generated heat, fuel inventory reduction, high-temperature operation, and prevention of a loss-of-coolant accident. The CaH2 allows operation at a core temperature of 800°C, which improves the efficiency of the reactor system. In the case of moderator function loss, hydrogen dissociation may occur at the higher temperature; however, negative temperature reactivity of the hydride-moderated core prevents reactor runaway. The negative temperature reactivity is realized by the poison nuclides 113Cd and 151Eu, which have a capture resonance peak at thermal energies in high-temperature operation. It was confirmed that the proposed method is capable of controlling the reactor over the whole burnup period.