ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Md Saifur Rahman, Jie Ding, Ali Beheshti, Xinghang Zhang, Andreas A. Polycarpou
Nuclear Science and Engineering | Volume 193 | Number 9 | September 2019 | Pages 998-1012
Technical Paper | doi.org/10.1080/00295639.2019.1582315
Articles are hosted by Taylor and Francis Online.
This study investigates the friction and wear behavior of Inconel 617, one of the primary candidate materials for high-temperature gas-cooled nuclear reactors. Using a custom-built, high-temperature tribometer, a helium (He)-cooled reactor environment was simulated up to 950°C. To obtain a comprehensive understanding of the Inconel 617 tribological response, the effects of contact load, temperature, air and He environments, sliding speed, and sliding distance were studied. From the conditions investigated, the coefficient of friction and wear values are the highest in a high-temperature He atmosphere. Scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction techniques were used to analyze the Inconel 617 oxide layer. Analysis of the samples tested in the He atmosphere showed the presence of Cr-rich oxide with a lower presence of Co-Ni-Mo compared to the samples tested in air. Characterization also revealed the existence of a very hard protective glaze layer in air while such layer was not observed in the He environment, which was associated with higher wear/friction values.