ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
M. J. Rapp, D. P. Barry, G. Leinweber, R. C. Block, B. E. Epping, T. H. Trumbull, Y. Danon
Nuclear Science and Engineering | Volume 193 | Number 8 | August 2019 | Pages 903-915
Technical Paper | doi.org/10.1080/00295639.2019.1570750
Articles are hosted by Taylor and Francis Online.
The electron linear accelerator housed in the Gaerttner Linear Accelerator Center at Rensselaer Polytechnic Institute was used to generate a pulsed neutron source to measure the neutron total cross section of tantalum, titanium, and zirconium from 0.4 to 25 MeV. Neutron transmission measurements were made using the time-of-flight method with neutron flight paths of approximately 100 and 250 m. The long flight paths combined with narrow neutron pulse widths, fast detector responses, fast electronics, and data collection system provide good energy resolution for the measurements. A high signal-to-background ratio through much of the energy range combined with low statistical errors resulted in low uncertainties on cross sections.
The results are presented and compared with the major nuclear data evaluations. Each measurement identifies regions where the neutron total cross sections could be reevaluated. The total cross-section measurements presented here can help nuclear data evaluators improve neutron total cross-section data in future evaluations.