ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Rose Montgomery, Robert N. Morris, Bruce Bevard, John Scaglione
Nuclear Science and Engineering | Volume 193 | Number 8 | August 2019 | Pages 884-902
Technical Paper | doi.org/10.1080/00295639.2019.1573602
Articles are hosted by Taylor and Francis Online.
The High Burnup Spent Fuel Data Project, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is focused on understanding the effects of long-term storage and transportation on high burnup (HBU) (>45 GW days per tonne uranium) light water reactor fuel. The project includes 32 HBU spent nuclear fuel (SNF) assemblies (the project assemblies) that are stored in a typical independent spent fuel storage installation (ISFSI) and 25 “sister rods”—9 SNF rods that were removed from the fuel assemblies prior to insertion to the ISFSI and 16 SNF rods removed from similar HBU assemblies. The sister rods provide a baseline of the condition of the HBU rods before loading, drying, and long-term dry storage. The project assemblies will be inspected after 10 years, and the physical state of the stored rods will be compared with the condition of the sister rods to identify any changes in physical properties during the dry storage period. This work focuses on key results from the nondestructive postirradiation examinations of the sister rods and summarizes the results of detailed visual examinations, gamma scans, dimensional measurements, and eddy current liftoff measurements of the combined Chalk River unidentified deposits and oxide layer on the waterside surface of the rod. The data are used to calculate fuel rod and pellet stack growth rates, estimated remaining fuel rod plenum volumes, and the percentage change in fuel rod cladding diameter.