ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Ryan G. McClarren
Nuclear Science and Engineering | Volume 193 | Number 8 | August 2019 | Pages 854-867
Technical Paper | doi.org/10.1080/00295639.2018.1565014
Articles are hosted by Taylor and Francis Online.
A novel method to compute time eigenvalues of neutron transport problems is presented based on solutions to the time-dependent transport equation. Using these solutions, we use the dynamic mode decomposition to form an approximate transport operator. This approximate operator has eigenvalues that are mathematically related to the time eigenvalues of the neutron transport equation. This approach works for systems of any level of criticality and does not require the user to have estimates for the eigenvalues. Numerical results are presented for homogeneous and heterogeneous media. The numerical results indicate that the method finds the eigenvalues that contribute the most to the change in the solution over a given time range, and the eigenvalue with the largest real part is not necessarily important to the system evolution at short and intermediate times.